Strategy‐based reasoning training modulates cortical thickness and resting‐state functional connectivity in adults with chronic traumatic brain injury†
نویسندگان
چکیده
INTRODUCTION Prior studies have demonstrated training-induced changes in the healthy adult brain. Yet, it remains unclear how the injured brain responds to cognitive training months-to-years after injury. METHODS Sixty individuals with chronic traumatic brain injury (TBI) were randomized into either strategy-based (N = 31) or knowledge-based (N = 29) training for 8 weeks. We measured cortical thickness and resting-state functional connectivity (rsFC) before training, immediately posttraining, and 3 months posttraining. RESULTS Relative to the knowledge-based training group, the cortical thickness of the strategy-based training group showed diverse temporal patterns of changes over multiple brain regions (pvertex < .05, pcluster < .05): (1) increases followed by decreases, (2) monotonic increases, and (3) monotonic decreases. However, network-based statistics (NBS) analysis of rsFC among these regions revealed that the strategy-based training group induced only monotonic increases in connectivity, relative to the knowledge-based training group (|Z| > 1.96, pNBS < 0.05). Complementing the rsFC results, the strategy-based training group yielded monotonic improvement in scores for the trail-making test (p < .05). Analyses of brain-behavior relationships revealed that improvement in trail-making scores were associated with training-induced changes in cortical thickness (pvertex < .05, pcluster < .05) and rsFC (pvertex < .05, pcluster < .005) within the strategy-based training group. CONCLUSIONS These findings suggest that training-induced brain plasticity continues through chronic phases of TBI and that brain connectivity and cortical thickness may serve as markers of plasticity.
منابع مشابه
Neuroplasticity of cognitive control networks following cognitive training for chronic traumatic brain injury
Cognitive control is the ability to coordinate thoughts and actions to achieve goals. Cognitive control impairments are one of the most persistent and devastating sequalae of traumatic brain injuries (TBI). There have been efforts to improve cognitive control in individuals with post-acute TBI. Several studies have reported changes in neuropsychological measures suggesting the efficacy of cogni...
متن کاملResting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملIdentification of Imaging and Clinical Markers Predicting Chronic Sleep Disturbances After Traumatic Brain Injury in Adults
Background and Aim: We aimed to determine the prognostic imaging and clinical markers of chronic Post-Traumatic Sleep-Wake Disorders (PTSWDs) with a special focus on the early cognitive and executive dysfunctions following Traumatic Brain Injury (TBI). The prevalence rate of Post-Traumatic Psychiatric Disorders (PTPDs) in various sleep disorders was also investigated. Methods and Materials/Pat...
متن کاملDetecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity
Accurate means to detect mild traumatic brain injury (mTBI) using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG) from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 co...
متن کاملCharacterization of thalamocortical association using amplitude and connectivity of fMRI in mild traumatic brain injury
Purpose—To examine thalamic and cortical injuries using fractional amplitude of low-frequency fluctuations (fALFF) and functional connectivity MRI (fcMRI) based on resting state (RS) and task-related fMRI in patients with mild traumatic brain injury (MTBI). Materials and Methods—Twenty-seven patients and 27 age-matched controls were recruited. 3T fMRI at RS and finger tapping task were used to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017